CXCR4 Antagonism Attenuates the Development of Diabetic Cardiac Fibrosis
نویسندگان
چکیده
Heart failure (HF) is an increasingly recognized complication of diabetes. Cardiac fibrosis is an important causative mechanism of HF associated with diabetes. Recent data indicate that inflammation may be particularly important in the pathogenesis of cardiovascular fibrosis. We sought to determine the mechanism by which cardiac fibrosis develops and to specifically investigate the role of the CXCR4 axis in this process. Animals with type I diabetes (streptozotocin treated mice) or type II diabetes (Israeli Sand-rats) and controls were randomized to treatment with a CXCR4 antagonist, candesartan or vehicle control. Additional groups of mice also underwent bone marrow transplantation (GFP+ donor marrow) to investigate the potential role of bone marrow derived cell mobilization in the pathogenesis of cardiac fibrosis. Both type I and II models of diabetes were accompanied by the development of significant cardiac fibrosis. CXCR4 antagonism markedly reduced cardiac fibrosis in both models of diabetes, similar in magnitude to that seen with candesartan. In contrast to candesartan, the anti-fibrotic actions of CXCR4 antagonism occurred in a blood pressure independent manner. Whilst the induction of diabetes did not increase the overall myocardial burden of GFP+ cells, it was accompanied by an increase in GFP+ cells expressing the fibroblast marker alpha-smooth muscle actin and this was attenuated by CXCR4 antagonism. CXCR4 antagonism was also accompanied by increased levels of circulating regulatory T cells. Taken together the current data indicate that pharmacological inhibition of CXCR4 significantly reduces diabetes induced cardiac fibrosis, providing a potentially important therapeutic approach.
منابع مشابه
CXCR4 Antagonism Attenuates the Cardiorenal Consequences of Mineralocorticoid Excess Chu et al: SDF-1/CXCR4 Pathway in Mineralocorticoid Excess
Background Extensive evidence implicates aldosterone excess in the development and progression of cardiovascular disease states including hypertension, metabolic syndrome, cardiac hypertrophy, heart failure and cardiorenal fibrosis. Recent studies show that activation of inflammatory cascade may play a specific role in the sequelae of mineralocorticoid activation, although the linking mechanism...
متن کاملCXCR4 antagonism attenuates the cardiorenal consequences of mineralocorticoid excess.
BACKGROUND Extensive evidence implicates aldosterone excess in the development and progression of cardiovascular disease states including hypertension, metabolic syndrome, cardiac hypertrophy, heart failure, and cardiorenal fibrosis. Recent studies show that activation of inflammatory cascade may play a specific role in the sequelae of mineralocorticoid activation, although the linking mechanis...
متن کاملCardiac dysfunction is attenuated by ginkgolide B via reducing oxidative stress and fibrosis in diabetic rats
Objective(s): Diabetic cardiomyopathy is a leading factor of high morbidity and mortality in diabetic patients. Our previous results revealed that ginkgolide B alleviates endothelial dysfunction in diabetic rats. This study aimed to investigate the effect of ginkgolide B on cardiac dysfunction and its mechanism in diabetic rats.Materials and Methods:<...
متن کاملDiosgenin attenuates cardiac oxidative stress in streptozotocin- induced diabetic rat
Background and Objective: Chronic diabetes mellitus (DM) leads to cardiovascular dysfunction. Diosgenin is a natural steroidal saponin with cardiovascular protective potential. In this research study, the beneficial effect of diosgenin was evaluated on some markers of oxidative stress in cardia tissue of streptozotocin (STZ)-diabetic rats. Materials and Methods: Male Wistar rats (n = 28) were ...
متن کاملEffect of Eight Weeks of Aerobic Training on Some Myocardial Fibrosis Indices in Cardiac Muscle of Diabetic Rats
Background. Myocardial fibrosis is identified as a major side effect of Diabetes Mellitus on the heart. Some bio-markers including the ratio of matrix metalloproteinases and their inhibitors in collagen synthesis and collagen degradation are clinically useful in the diagnosis and identification of myocardial fibrosis. In addition, regular aerobic exercise training is one of the major and non-ph...
متن کامل